FoxO1 regulates allergic asthmatic inflammation through regulating polarization of the macrophage inflammatory phenotype

نویسندگان

  • Sangwoon Chung
  • Tae Jin Lee
  • Brenda F. Reader
  • Ji Young Kim
  • Yong Gyu Lee
  • Gye Young Park
  • Manjula Karpurapu
  • Megan N. Ballinger
  • Feng Qian
  • Luiza Rusu
  • Hae Young Chung
  • Terry G. Unterman
  • Carlo M. Croce
  • John W. Christman
چکیده

Inflammatory monocyte and tissue macrophages influence the initiation, progression, and resolution of type 2 immune responses, and alveolar macrophages are the most prevalent immune-effector cells in the lung. While we were characterizing the M1- or M2-like macrophages in type 2 allergic inflammation, we discovered that FoxO1 is highly expressed in alternatively activated macrophages. Although several studies have been focused on the fundamental role of FoxOs in hematopoietic and immune cells, the exact role that FoxO1 plays in allergic asthmatic inflammation in activated macrophages has not been investigated. Growing evidences indicate that FoxO1 acts as an upstream regulator of IRF4 and could have a role in a specific inflammatory phenotype of macrophages. Therefore, we hypothesized that IRF4 expression regulated by FoxO1 in alveolar macrophages is required for established type 2 immune mediates allergic lung inflammation. Our data indicate that targeted deletion of FoxO1 using FoxO1-selective inhibitor AS1842856 and genetic ablation of FoxO1 in macrophages significantly decreases IRF4 and various M2 macrophage-associated genes, suggesting a mechanism that involves FoxO1-IRF4 signaling in alveolar macrophages that works to polarize macrophages toward established type 2 immune responses. In response to the challenge of DRA (dust mite, ragweed, and Aspergillus) allergens, macrophage specific FoxO1 overexpression is associated with an accentuation of asthmatic lung inflammation, whereas pharmacologic inhibition of FoxO1 by AS1842856 attenuates the development of asthmatic lung inflammation. Thus, our study identifies a role for FoxO1-IRF4 signaling in the development of alternatively activated alveolar macrophages that contribute to type 2 allergic airway inflammation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P130: The Role of Rho-Kinase (ROCK) in Microglia/Macrophage Polarization in Neuroinflammatory Diseases

Macrophage/microglia with heterogonous phenotype and function under physiological and pathological conditions are the main cell lineage involved in inducing immune responses in neuroinflammatory diseases which exhibit combined inflammatory and anti-inflammatory functions. An increase in the expression of iNOS triggers M1 phenotype that secrete high concentrations of inflammatory cytokines, whil...

متن کامل

Ex vivo modulation of the Foxo1 phosphorylation state does not lead to dysfunction of T regulatory cells

Peripheral regulatory CD4+ T cells (Treg cells) prevent maladaptive inflammatory responses to innocuous foreign antigens. Treg cell dysfunction has been linked to many inflammatory diseases, including allergic airway inflammation. Glucocorticoids that are used to treat allergic airway inflammation and asthma are thought to work in part by promoting Treg cell differentiation; patients who are re...

متن کامل

P158: Targeting of Microglial M1/M2 Polarization Through Stem Cells Therapy as A Promising Candidate in Traumatic Brain Injury (TBI)

Traumatic brain injury is a serious global health problem with irreversible high morbidity and disability and Because of its unknown pathophysiological mechanisms, efficient therapeutic approaches to improve the poor outcome and long-term impairment of behavioral function are still remains lacking. The microglial cells are the resident macrophage cells of the brain and have M1/M2 phenotype, for...

متن کامل

P95: Targeting of Microglial M1/M2 Polarization through Stem Cells Therapy as a Promising Candidate in Traumatic Brain Injury (TBI)

Traumatic brain injury is a serious global health problem with irreversible high morbidity and disability and Because of its unknown pathophysiological mechanisms, efficient therapeutic approaches to improve the poor outcome and long-term impairment of behavioral function are still remains lacking. The microglial cells are the resident macrophage cells of the brain and have M1/M2 phenotype, for...

متن کامل

The TSC-mTOR pathway regulates macrophage polarization

Macrophages are able to polarize to proinflammatory M1 or alternative M2 states with distinct phenotypes and physiological functions. How metabolic status regulates macrophage polarization remains not well understood, and here we examine the role of mTOR (mechanistic target of rapamycin), a central metabolic pathway that couples nutrient sensing to regulation of metabolic processes. Using a mou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016